If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4v^2+19v+14=0
a = 4; b = 19; c = +14;
Δ = b2-4ac
Δ = 192-4·4·14
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{137}}{2*4}=\frac{-19-\sqrt{137}}{8} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{137}}{2*4}=\frac{-19+\sqrt{137}}{8} $
| x+7=12+18 | | 8b+3-106=2(b-2)+3 | | 9+8=-17(x-2)+11+28x | | 1/3x^2-16=0 | | 9x^2−54x+88=0 | | -30+-3y=18 | | (158+4x)+(x^2+32)=180 | | -11-6=a | | 10n+20=6n | | (158+4x)+(x^2-32)=180 | | 9x2−54x+88=0 | | 180=13x+1+9x+3 | | -y/12=24 | | (158-4x)+(x^2-32)=180 | | 9+8=-17(x-2)+11=28x | | w+4/3+1/3=-1/6(w-7/2) | | (158-4x)+(x^2+32)=180 | | 102-8f=38 | | (9x-3)(5x+3)=0 | | 420=2n-1 | | 75+18z=453 | | x^2-4x+158+32-180=0 | | 1/3(t-6)-10=-3t+2 | | 2=k10 | | 3-k/1-5=2 | | X²+x-15=0 | | -3(2-a)=9 | | 17b-(-93)=926 | | 261-3n=732 | | 9000=10800/1+x | | -(2n+5)=9 | | -11w-4=7 |